Last Thursday’s #mathchat topic was “Is the spirit of mathematical thinking being swamped by a focus on technique?”. One of the things that caught my eye during this discussion was a comment by David Wees suggesting that we teach math more like programming. I’ve proposed something similar to this before, but as the conversation continued into the details of learning how to program I started to think of the process like learning a foreign language. While I quickly came to realize that there were differing views on how foreign languages should be taught, I think there might be something to this idea. The human brain has built-in hardware to assist in learning language. Can math education take advantage of it?
Mathematics has its something of its own written language. A “conventional mathematical notation” has emerged through a variety of social influences. Some of those notations “just make sense” in the context, while others are adopted for purely historical reasons. As an undergraduate, college mathematics was like learning a foreign language for me. I had no idea what “$$ \forall n \in \mathbb{R} $$” meant. Aside from “n“, those symbols were not used once in any of my previous courses! It was culture shock. I eventually adjusted, but I now understand why mathematical notation can have such an intimidating effect on people.
What follows are my experiences with learning two foreign languages and how I think the difference between the two methodologies relates to the “math wars”. I had 2 years of Spanish in high school and 3 semesters of Russian in college. I’m going to refer to the teachers as Mrs. T and Mrs. R respectively, for reasons that I think will be obvious later.
Mrs. T’s Spanish class was held in a portable classroom at the edge of the high school. The classroom held about 30 students and the air conditioning barely kept out the 100-120 degree desert heat. I must give Mrs. T some credit for being able to do her job under such conditions. The classes often started with practice reciting words and phrases, followed by worksheets in groups and ending in a quiz. “Capitones, vengan aqui”, she would say while slamming her hand down on the table in front of her, indicating that the students in the front row of the class were to carry everyone’s work up to her. Everyday she would do the same routine, and everyday I wished that table would snap in half. We had done so many 10 point worksheets that at the end of the semester I came to the mathematical conclusion that the 100 point Final was only 2% of my grade. Being the little smart-ass that I was, I pointed out that I could skip the Final and still get an A. I don’t think she liked that very much, because she threatened to fail me if I didn’t take it. Aye que pena!
Mrs. R’s class was much smaller, with only about 8 students. It was more like a conference room than a classroom. There was a U-shaped table that opened towards the white board, so Mrs. R could walk up to each person and engage in conversation. There was some rote memorization at first, while we learned the alphabet and basic grammar, but after the first few weeks of class Mrs. R started refusing to speak English in class. Class started with everyone saying hello and talking about his/her day — in Russian. We role-played different situations — in Russian. If I needed to know a word, I had to ask about it — in Russian — and someone would explain it to me — in Russian. We watched Russian films and listened to Russian rock music. It didn’t feel like a class, but rather like 9 friends with similar interests hanging out for an hour each day.
In both of the classes I learned much about the respective languages, but what really stuck with me in each case was the culture. I might not remember enough of the vocabulary to consider myself fluent in either language, but I’ll still find myself singing along with Santana or Mashina Vremeni.
In the “Math Wars”, the Traditionalists follow something similar to Mrs. T’s method while the Reformers want math to look more like Mrs. R’s class. Both methods “work”, if test scores are all you care about, but there’s a very subtle difference between them. In Spanish class, I always felt like I was always translating to and from English in order to communicate. In Russian class, I felt like I was articulating ideas directly in Russian. There’s something beautiful about just immersing yourself in a different language until you learn it. I learned how to program in C by installing GNU/Linux and reading other peoples’ source code. Sure I read a few books on the matter, but it was immersing myself in “C culture” that really solidified my understanding.
For students to really learn math, they need to be immersed in the “culture of mathematical thinking”. I might not agree with the term “spirit”, but mathematicians seem to display a common pattern of asking very entertaining “what if?”s and seeking out the answers. You can find beautiful math in something as simple as drawing doodles in class. There’s more mathematical thinking going on when two kids make up a game during recess than there is in a thousand worksheets. Our body of mathematical knowledge is formed through communication and peer-review. It’s is such a shame to see math classes run like a dictatorship, built around memorizing a list of “techniques”. Sure, mathematics is an essential skill in finance, data, and engineering, but lets not underestimate the importance of “asking questions” in our focus on “problem solving”.
Proceeding with the question “what if we teach math like a foreign language?”, what might we do differently?
Mrs. T might argue that repetition seems to work, and there’s a substancial amount of evidence it does (at least in the short term). Math class already has its fair share of repetitious worksheets, but what if we shift the focus of the repetition to learning the “alphabet and grammar” of mathematics earlier like Mrs. R’s class? We could start with “set theory” and “logic” then work up from a firm foundation. The benefits could be substantial.
Mrs. R might also argue that students need to be immersed in the culture of math. Students should learn about the history of math and be exposed to “mathematical pop culture”. Let’s laugh together at XKCD or collectively gasp in bewilderment at the arXiv. It’s moments like those that make us human. Lets embrace them.
Embrace the “culture of math”.
Of course, it would probably be a lot easier to do such a thing with a student-teacher ratio of 8:1. One can only dream…