The Misunderstood Generation

I picked up Mark Bauerlein’s The Dumbest Generation: How the Digital Age Stupefies Young Americans and Jeopardizes Our Future * or Don’t Trust Anyone Under 30 (DG) yesterday and have been up all night reading it. Not because I enjoyed it, but because it made me angry. I should have anticipated this, considering how I’m 27 and the sub-title of the book is “Don’t Trust Anyone Under 30”. I’m a part of the generation Bauerlein is talking about, and I consider this book a biased pseudo-scientific misrepresentation of myself and my peers.

It’s important to note that I probably represent a fringe case within the generation. I read regularly and tend towards non-fiction literature. The fact that I bought this book in the first place is evidence that I’m an outlier. I play several musical instruments, saxophone and guitar being my favorites. I taught myself how to program in high school and designed websites for local businesses. I started out as a Math Major in college, but eventually double majored in Mathematics and Psychology because I was fascinated with learning how the human mind works. After graduating, I pursued another love of mine, video games, and landed a job as a programmer at a game studio. After a few years, I decided that I wanted to make video games that fostered the development of critical thinking skills. I enrolled myself in graduate school and started teaching remedial math. I’m also a complete technophile, love the latest gadgets and gizmos, and can’t stand more than a day without being connected to the Net.

Bauerlein talks quite negatively of video games, and I don’t think this criticism is well founded. There’s a substantial amount of mathematics that can be found in video games. Gamer communities like the Elitist Jerks (http://elitistjerks.com) use spread sheets and simulation programs to mathematically optimize stats and equipment in World of Warcraft. These massively multiplayer online games are complex mathematical systems, complete with virtual economies and social interaction. “Casual” players might not experience the same depth of content, but the “hardcore” players participate in a substantial amount of meta-gaming and often reflexively analyze their performance to foster continued improvement. I think its unfair to devalue competitive video gaming as simply a leisure activity; I consider such play to be equally as intellectual as playing Chess or Go. I would also note the considerable amount of mathematics, science, and art involved in making the video game itself. From my personal experience, learning to play and create video games directly contributed to my interest in math, science and engineering. There are a myriad of video games that are trivial and superficial, but there are also games I would call “higher art” that challenged my perceptions about storytelling in an interactive medium. Bauerlein doesn’t even address the topic of video games as “higher art”. He treats the entire medium as if it were completely devoid of any social value altogether.

What kinds of media does Bauerlein suggest in video games’ place? A variety of gems including Harry Potter, Dante, Milton, A Christmas Carol, Rush Limbaugh, Fox News, and the Bible. Bauerlein tries to portray the problem as a cultural war, but these repeated references to religiously themed works also reveal an ideological difference. These were probably intended as generic books and news sources, but the choices used show a pattern of right-wing religious bias. The whole argument is framed like a dichotomy between the conservative-religious-elders and the liberal-secular-youth, as personified by technology. It appears like Bauerlein is more upset about students not reading his culturally biased list of literature than he is about the real faults of our nation’s education system.

These are bold claims, but there are good reasons to be skeptical of DG. The information is all second-hand, and no new research is presented. The data that is presented is not even organized into a coherent framework. It reads like series of disconnected statistics are piled on, one after the other, with no consistency in procedure. In themselves, they each sound like reasonable results. However, the data is mostly tangent to the central thesis about the role technology in producing these trends. It gradually turns into “proof by verbosity”, focusing largely on differences in cultural and ideological values which are not scientifically falsifiable hypotheses to begin with. The book repeatedly references “tradition” as an authority, as if the previous generation has some mysterious source of ancient wisdom. Science is conducted in the open. Clinging onto ideas out of tradition alone is not the way to foster progress.

There are a couple of points in particular that seem suspect. First, the inconsistency between falling rates of factual recall and increasing averages on IQ tests. Memorization skill and Intelligence are two entirely separate constructs. The obvious explanation for this phenomena is that the collection of information worth memorizing has changed but general problem solving ability hasn’t. The largest drop in the included performance statistics seemed to take place after the turn of the millennium, which is also a bit suspicious given 2001 passage of the No Child Left Behind Act of 2001. It’s difficult to compare data from before and after a major legislative change which mandates changes in how student performance is assessed and how teachers teach. There is not enough data here to rule out the interaction of other changes in the educational process as an alternative explanation. In a scientific study, the data should speak for itself. The data presented in DG shows that there is significant need for improvement in education, but it’s not enough to indict technology as the singular cause of the problem.

Another point worth making is that DG suffers from a combination of selection and actor-observer biases. In defending Generation M, I’m partially guilty of this myself. I’m an intellectual person and tend to associate with like-minded people. Thus, I have a tendency to generalize the behaviors my peer group appears to the generation as a whole. I think Brauerlein is guilty of this also. He probably tends to associate with the intellectual types and may therefore incorrectly generalizes this intellectualism to his generation as a whole. The second fallacy here, is that there is also a tendency to attribute observed behaviors to personality traits instead of the situation. As Brauerlein acknowledges, it’s not unusual for teens to go through a rebellious phase, and the technology usage might just be an expression of this. Consider another option: What if Gen M-ers are being honest when they say the information they’re being taught isn’t relevant to their lives? Certainly these questions merit additional consideration.

This is a commercial product, which is intended to sell copies, rather than a peer-reviewed study in a scientific journal. The reviews on book cover are all from popular media sources rather than the scientific community. Some of Bauerlein’s statistics are certainly interesting, but I don’t think they demonstrate anything close to a causal relationship between technology usage and intelligence. He doesn’t bother to define “intelligence” and tends to use it interchangeably with “knowledge”. I would have also liked to see an effort to normalize the data and plot it over time in comparison to technology usage rates. He cites plenty of sources showing a deficiency in these skills, but there are still too many external factors to point to technology as the source of the problem. The fact that learners process web information differently than print materials just shows that the two mediums need different approaches.

The language of the book is highly emotionally charged and features numerous stereotypical persuasive devices. It identifies a common enemy for the readers to rally against, uses cultural references to which older readers would relate closely, and tries to make the readers feel like a part of something larger than themselves. Even the choice of title and cover art seems like it was designed to trigger an emotional response rather than promote rational intelligent discourse. I found it particularly interesting how Bauerlein tries to present jazz as a higher art form in opposition to modern rap and rock. The irony is that jazz was all about “breaking the rules”, reversing the established chord progression, and eventually laid the foundation for the modern music which Bauerlein seems to despise so thoroughly.

During my undergraduate study, there were times where I found myself relearning subjects from new perspectives. Gödel’s Incompleteness Theorem completely changed how I thought about mathematics and computing. The theorem states that any fixed formal axiomatic system will have statements that are neither provable or disprovable in that system. Math ceased being about prescribed procedures and memorization and turned into an exploration of how different sets of hypothetical rules might behave. It stopped being about blindly following the rules and instead tolerated the bending or even breaking of them. Part of me wished math could had been that way from the beginning. I wanted to provide the “past me” with a variety of different sets of rules and allow me to explore how they work in a controlled environment. That’s precisely why I think Games have such potential as a educational medium. They don’t need to be Video Games. Board, Card, Dice and Pen & Paper Games have very beautiful and complex mathematical structures lurking just below the surface of the rules.

My active rejection of the traditional values is different from a passive indifference as implied by DG. I might be a statistical anomaly in this cohort, but I don’t think I’m alone. Brauerlein might reject the notion that the problem is in the situation and not the students, but my experiences showed me that many things presented as “facts” in middle/high school were quickly replaced by better models in college. Newtonian Physics became M-theory, Math became Meta-Math, and Technology Use evolved into Software Engineering. DG suggests that the curriculum is not “hard” enough, so maybe we just need to stop diluting the truth? I wish I had Logic and Set Theory as topics in grade school. I want “past me” to be allowed the opportunity to build a solid foundation for the “real” math I’ll encounter in the “real” world. I don’t want to “learn the wrong way now, learn the right way in college”. Why should I trust an authority figure that routinely hides the truth from me because “its too hard”?

4 comments

  1. You have to express more your opinion to attract more readers, because just a video or plain text without any personal approach is not that valuable. But it is just form my point of view

  2. @Gooner
    Thanks for the feedback. This is something of a new medium for me and perhaps I’m too used to academic writing. I’ll try to improve in the future.

    @The-One
    The impression that I got from Bauerlein was that Gen M was “dumb” for not valuing the same knowledge as previous generations. I think that this is an oversimplification of what’s really going on, which is a change in what knowledge is considered valuable by the culture. The word “dumb” implies a lack of intelligence, which I interpret to mean the ability to acquire knowledge. I don’t think the evidence in Dumbest Generation adequately supports this claim. It seems to me that the difference lies not in intelligence but wisdom, or the accumulated knowledge. The problem is not that the Millennials are unable to acquire knowledge, but that the knowledge valued by them is different. Removing technology from the learning environment, as Bauerlein suggests, is not the appropriate solution to this problem. What needs to happen is that the curriculum should be adapted so that the content presented is more applicable to the modern student.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.